Preskoči do informacija o proizvodu
1 od 1

Stručna Knjižara

Machine Learning for Civil and Environmental Engineers: A Practical Approach to Data-Driven Analysis, Explainability, and Causality - M. Z. Naser

Machine Learning for Civil and Environmental Engineers: A Practical Approach to Data-Driven Analysis, Explainability, and Causality - M. Z. Naser

Redovna cijena €85,00
Redovna cijena Prodajna cijena €85,00
Popust Rasprodano
Porez je uključen. Poštarina se obračunava prilikom završetka kupnje.
Kratki opis: autor: M. Z. Naser broj stranica: 608 godina izdanja: October 2023. vrsta uveza: tvrdi jezik: engleski ISBN: 978-1-119-89760-6
DESCRIPTION

Accessible and practical framework for machine learning applications and solutions for civil and environmental engineers

This textbook introduces engineers and engineering students to the applications of artificial intelligence (AI), machine learning (ML), and machine intelligence (MI) in relation to civil and environmental engineering projects and problems, presenting state-of-the-art methodologies and techniques to develop and implement algorithms in the engineering domain.

Through real-world projects like analysis and design of structural members, optimizing concrete mixtures for site applications, examining concrete cracking via computer vision, evaluating the response of bridges to hazards, and predicating water quality and energy expenditure in buildings, this textbook offers readers in-depth case studies with solved problems that are commonly faced by civil and environmental engineers.

The approaches presented range from simp...


ABOUT THE AUTHOR

M. Z. Naser is a tenure-track faculty member at the School of Civil and Environmental Engineering & Earth Sciences and a member of the Artificial Intelligence Research Institute for Science and Engineering (AIRISE) at Clemson University, USA. Dr. Naser has co-authored over 100 publications and has 10 years of experience in structural engineering and AI. His research interest spans causal & explainable AI methodologies to discover new knowledge hidden within the domains of structural & fire engineering and materials science to realize functional, sustainable, and resilient infrastructure. He is a registered professional engineer and a member of various international editorial boards and building committees.

TABLE OF CONTENTS
Preface xiii

About the Companion Website xix

1 Teaching Methods for This Textbook 1 Synopsis 1

1.1 Education in Civil and Environmental Engineering 1

1.2 Machine Learning as an Educational Material 2

1.3 Possible Pathways for Course/Material Delivery 3

1.4 Typical Outline for Possible Means of Delivery 7

Chapter Blueprint 8

Questions and Problems 8

References 8

2 Introduction to Machine Learning 11

Synopsis 11

2.1 A Brief History of Machine Learning 11

2.2 Types of Learning 12

2.3 A Look into ML from the Lens of Civil and Environmental Engineering 15

2.4 Let Us Talk a Bit More about ML 17

2.5 ML Pipeline 18

2.6 Conclusions 27

Definitions 27

Chapter Blueprint 29

Questions and Problems 29

References 30

3 Data and Statistics 33

Synopsis 33

3.1 Data and Data Science 33

3.2 Types of Data 34

3.3 Dataset Development 37

3.4 Diagnosing and Handling Data 37

3.5 Visualizing Data 38

3.6 Exploring Data 59

3.7 Manipulating Data 66

3.8 Manipulation for Computer Vision 68

3.9 A Brief Review of Statistics 68

3.10 Conclusions 76

4 Machine Learning Algorithms 81

Synopsis 81

4.1 An Overview of Algorithms 81

4.2 Conclusions 127

5 Performance Fitness Indicators and Error Metrics 133

Synopsis 133

5.1 Introduction 133

5.2 The Need for Metrics and Indicators 134

5.3 Regression Metrics and Indicators 135

5.4 Classification Metrics and Indicators 142

5.5 Clustering Metrics and Indicators 142

5.6 Functional Metrics and Indicators* 151

5.7 Other Techniques (Beyond Metrics and Indicators) 154

5.8 Conclusions 159

6 Coding-free and Coding-based Approaches to Machine Learning 169

Synopsis 169

6.1 Coding-free Approach to ML 169

6.2 Coding-based Approach to ML 280

6.3 Conclusions 322

7 Explainability and Interpretability 327

7 Synopsis 327

7.1 The Need for Explainability 327

7.2 Explainability from a Philosophical Engineering Perspective* 329

7.3 Methods for Explainability and Interpretability 331

7.4 Examples 335

7.5 Conclusions 428

8 Causal Discovery and Causal Inference 433

Synopsis 433

8.1 Big Ideas Behind This Chapter 433

8.2 Re-visiting Experiments 434

8.3 Re-visiting Statistics and ML 435

8.4 Causality 436

8.5 Examples 451

8.6 A Note on Causality and ML 475

8.7 Conclusions 475

9 Advanced Topics (Synthetic and Augmented Data, Green ML, Symbolic Regression, Mapping Functions, Ensembles, and AutoML) 481

Synopsis 481

9.1 Synthetic and Augmented Data 481

9.2 Green ML 488

9.3 Symbolic Regression 498

9.4 Mapping Functions 529

9.5 Ensembles 539

9.6 AutoML 548

9.7 Conclusions 552

10 Recommendations, Suggestions, and Best Practices 559

Synopsis 559

10.1 Recommendations 559

10.2 Suggestions 564

10.3 Best Practices 566

11 Final Thoughts and Future Directions 573

Synopsis 573

11.1 Now 573

11.2 Tomorrow 573

11.3 Possible Ideas to Tackle 575

11.4 Conclusions 576

References 576

Index 577

Građevinarstvo Građevinarstvo - Ostalo Knjižara - Sve knjige Wiley

Česta pitanja

Koji su Načini plaćanja?

- Kreditnom ili debitnom karticom
- Pouzećem – plaćanje po primitku paketa direktno djelatniku pošte
- Virmanom (uplata na žiro račun) -plaćanje Internet bankarstvom, uplatnicom u pošti, banci

Koliki su troškovi poštarine i koji je rok isporuke?

Iznos narudžbe (vrijednost košarice) i troškovi slanja na adrese u Republici Hrvatskoj
Do 150,00 € -> 7,00 €
Iznad 150,00 € -> Gratis
Iznos narudžbe (vrijednost košarice) i troškovi slanja u inozemstvo
Do 26,54 € -> 20,97 €
Za svakih slijedećih 26,54 € vrijednosti košarice (do maksimalne vrijednosti košarice 132,72 €) dodaje se 5,30 €
Od 132,72 € vrijednosti košarice nadalje trošak dostave iznosi 46,18 €
Rok isporuke je od 14 do 30 radnih dana (u radne dane ne spadaju vikendi, blagdani i državni praznici).
U slučaju nepredviđene situacije, rok dostave može se produljiti, ali o tome ćete biti naknadno obaviješteni (mailom ili telefonski).

Da li je moguće osobno preuzimanje naručenih knjiga na adresi?

Kada su knjige dostupne, moguće je osobno preuzimanje knjiga na adresi ureda Ivane Brlić Mažuranić 72 (Malešnica), 10090 Zagreb uz obaveznu prethodnu najavu na telefon 00385 (0)1 3731 748.

Trebate pomoć oko kupovine putem naše internet stranice www.strucnaknjizara.com?

Slobodno nas kontaktirajte putem naše e-mail adrese: info@strucnaknjizara.com ili telefonski na broj: 00385 (0)1 3731 748.
Ako se ne snalazite ili ne želite naručiti knjige preko internet trgovine, slobodno nam pošaljite direktan upit/narudžbu na e-mail na info@strucnaknjizara.com.
Za narudžbu su potrebni sljedeći podaci:
Točan naslov željene knjige i količina,
ime i prezime,
adresa dostave,
e-mail adresa i
telefonski broj.

Prikaži sve pojedinosti